Product Description

 

Product Description

Item No.:  SS6901ZZ/SS6901-2RS

Type: Deep Groove Ball Bearing

Material: Stainless Steel(AISI440C/9Cr18)

Bore diameter: 12mm Outer diameter : 24mm Width(Height/Thickness): 6mm

Size: 12*24*6mm

Dynamic load C0: 2.89 Static load C0r: 1.46 Grease: 27000 Oil: 32000

Cage(retainer): Ribbon Cage(SPCC/T8)

Closures: 2 Metal Shields(SPCC)/2 Rubber seals(NBR)

Balls: Stainless Steel Balls

Lubrication: Grease

 

 

Item No. Bore diameter
(mm)
Outer diameter
(mm)
Width(Height/Thickness)
(mm)
Closures
SS6901ZZ 12 24 6 2 Metal Shields(SPCC)
SS6901-2RS 12 24 6 2 Rubber seals(NBR)

 

Detailed Photos

SS6901ZZ

SS6901-2RS

 

Our Advantages

 Compared with ordinary bearings, stainless steel bearings have distinct material advantage because stainless steel bearings
have more wide application than ordinary bearings. In rusty and corrosive environment, the cost performance of stainless steel
bearings is outstanding specially.

 Stainless Steel Bearing:
1. stronger anti-rust property and anti-corrosion property.
2. CZPT to serve under -60ºC~+300ºC.
3. resist humidity and corrosion caused by other media.
4. has a deep bearing raceway groove, and the fit between the bearing raceway and the ball is extremely high.
5. high mechanical strength and large loading capacity.

 Our company provides high-precision homemade bearing of ordinary material, including deep groove ball bearing and full complement cylindrical roller bearings.
 The material refers to high-quality bearing steel, thermal treatment technology is put under strict control, and it is CZPT to carry out cryogenic treatment. And full complement cylindrical roller bearings adopts advanced roller CZPT for thermal treatment. Other technologies are all processed by full-automatic and semiautomatic equipment, and the production technology and quality control are arranged as per P5 precision. It products widely support home and abroad manufacturers of electric tools, mechanical equipment, automobile components, etc.
 

Manufacture Equipment

 

Company Profile

HangZhou WOLEE INDUSTRIAL CO.,LTD

 HangZhou WOLEE induststial Co., Ltd. was founded in 2015. It is a professional company which engages in import and export of industrial components and is a professional production base with joint stocks.

 The company mainly operates bearings and other industrial components such as chain, CZPT rail, gear and micro gearbox. Its products are widely used in the fields of metallurgy, mining, papermaking, petrochemical, power, railway, aviation, cement, textile, machinery, etc., it has lots of clients among these fields and has accumulated rich experience to meet different demands of all sectors. At present, its trade scale expands increasingly, its clients are all across the world, and it wins the trust of home and abroad clients by virtue of good reputation.

 The company adheres to the tenet of “people first, quality first, credit first and reputation first” and provides each client with top service.

 It heartily hopes to join hands with you to create a wonderful world.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

steel ball bearing

What is the role of cage design and materials in steel ball bearing performance and durability?

The cage design and materials used in steel ball bearings play a crucial role in determining their performance and durability. The cage, also known as the bearing retainer or separator, holds the steel balls in position and maintains the proper spacing between them. It prevents the balls from coming into contact with each other, which could lead to excessive friction, wear, and damage. Here’s an explanation of the role of cage design and materials in steel ball bearing performance and durability:

1. Ball Guidance and Positioning:

The primary function of the cage is to guide and position the steel balls within the bearing. The cage ensures that the balls are evenly distributed around the bearing raceways, maintaining proper alignment and preventing contact between adjacent balls. This guidance and positioning function is crucial for achieving smooth and efficient rolling motion, reducing friction, and optimizing the performance of the bearing.

2. Friction and Heat Reduction:

The cage design and materials can significantly impact the friction and heat generated during bearing operation. An efficient cage design allows for proper ball rotation while minimizing contact and sliding friction between the balls and the cage itself. This reduced friction helps to minimize energy loss and heat generation, improving the overall efficiency and durability of the bearing. Additionally, some cage materials have low thermal conductivity, which can further contribute to heat reduction and prevent overheating of the bearing.

3. Load Distribution:

The cage also plays a role in distributing the applied loads evenly among the steel balls. By maintaining the correct spacing between the balls, the cage helps to distribute the radial and axial loads across a larger contact area. This load distribution capability prevents localized stresses and reduces the risk of premature wear or failure of the bearing. A well-designed cage ensures that the bearing can handle higher loads and provides improved durability under demanding operating conditions.

4. Lubricant Retention:

The cage design can impact the retention and distribution of lubricant within the bearing. Proper lubrication is essential for reducing friction, preventing wear, and protecting against corrosion. The cage should allow for sufficient lubricant flow and retention, ensuring that the balls and raceways are adequately lubricated during operation. An effective cage design promotes the proper distribution and retention of lubricant, enhancing the overall performance and durability of the bearing.

5. Material Compatibility and Durability:

The choice of cage materials is critical for the durability and performance of steel ball bearings. The cage materials must be compatible with the bearing operating conditions, including factors such as speed, temperature, and exposure to corrosive environments. Common cage materials include steel, brass, bronze, synthetic resins, and polymers. Each material has its own advantages and limitations in terms of strength, wear resistance, corrosion resistance, and temperature resistance. The selection of the appropriate cage material ensures the long-term durability and reliable operation of the bearing under specific application requirements.

6. Noise and Vibration Control:

The cage design can also influence the level of noise and vibration generated by the bearing during operation. A well-designed cage can help reduce noise and vibration by maintaining ball stability, minimizing ball-to-cage and ball-to-raceway contact, and dampening oscillations. This noise and vibration control not only improves user comfort but also reduces the risk of damage to other components in the machinery or equipment.

7. Application-Specific Considerations:

In some cases, the cage design and materials may need to be tailored to specific application requirements. For example, in high-speed applications, cages with low mass and low centrifugal forces may be preferred to minimize the risk of cage deformation or imbalance. In environments with exposure to chemicals or extreme temperatures, cage materials with excellent chemical resistance or high-temperature stability may be necessary. Application-specific considerations ensure that the cage design and materials are optimized for the specific operating conditions, further enhancing bearing performance and durability.

In summary, the cage design and materials used in steel ball bearings play a vital role in their performance and durability. The cage provides ball guidance, reduces friction and heat, distributes loads, retains lubricant, and controls noise and vibration. The choice of cage materials must consider factors such as compatibility, durability, and application-specific requirements to ensure optimal bearing performance and long-term reliability.

steel ball bearing

What are the potential challenges or limitations associated with using steel ball bearings in specific industries?

While steel ball bearings offer numerous advantages, there are also certain challenges and limitations associated with their use in specific industries. Let’s explore some of these potential challenges:

1. Corrosion:

Steel ball bearings are susceptible to corrosion, especially when exposed to moisture, harsh chemicals, or corrosive environments. Corrosion can lead to pitting, surface damage, and premature failure of the bearings. In industries such as marine, offshore, or chemical processing, where exposure to corrosive elements is common, alternative bearing materials or protective coatings may be required to mitigate the effects of corrosion.

2. High-Temperature Applications:

Extreme temperatures can pose challenges for steel ball bearings. At high temperatures, the lubricants may degrade, resulting in inadequate lubrication and increased friction. The heat generated during operation can also cause thermal expansion, leading to improper clearances or interference fits. In industries such as aerospace, automotive, or industrial ovens, where high temperatures are prevalent, specialized high-temperature bearing materials and lubricants may be necessary to ensure reliable performance.

3. Contamination and Cleanliness:

Contamination by dust, dirt, or particles can affect the performance and lifespan of steel ball bearings. Industries such as mining, construction, or agriculture often expose bearings to harsh and dusty environments, increasing the risk of contamination. Regular maintenance, proper sealing methods, and implementing effective contamination control measures are essential to minimize the adverse effects of contamination on the bearings.

4. Axial and Radial Loads:

Steel ball bearings have specific load capacity limits, both axially and radially. Exceeding these limits can result in increased stress, deformation, or premature failure. In industries where heavy loads are encountered, such as heavy machinery, construction equipment, or wind turbines, it is crucial to select bearings with appropriate load ratings and consider factors such as load distribution, shaft deflection, and operating conditions to ensure reliable performance.

5. Vibration and Noise:

Steel ball bearings can generate vibration and noise, particularly at high speeds or in applications with unbalanced loads. Excessive vibration and noise can impact the overall system performance and cause discomfort or safety concerns. In industries such as precision machining, robotics, or medical equipment, where low vibration and noise levels are crucial, additional measures such as vibration dampening, precision balancing, or alternative bearing designs may be necessary.

6. Speed Limitations:

Although steel ball bearings are designed to operate at high speeds, there are limitations imposed by factors such as ball size, cage design, lubrication, and centrifugal forces. Exceeding the recommended speed limits can lead to increased heat generation, ball skidding, or cage failure. In industries such as aerospace, automotive racing, or high-speed machinery, specialized high-speed bearing designs or alternative bearing technologies, such as ceramic bearings, may be utilized to achieve the desired performance at extreme speeds.

7. Specialized Environments:

Some industries present unique challenges that may require specialized bearing solutions beyond the capabilities of steel ball bearings. For example, industries involving cryogenic temperatures, vacuum environments, or ultrahigh precision applications may necessitate alternative bearing materials, lubricants, or designs to ensure optimal performance and reliability.

By understanding and addressing these potential challenges and limitations, industries can make informed decisions regarding the selection, application, and maintenance of steel ball bearings or explore alternative bearing options that better suit their specific requirements.

steel ball bearing

How do steel ball bearings contribute to reduced friction and smooth operation in machinery?

Steel ball bearings play a critical role in reducing friction and ensuring smooth operation in various machinery and mechanical systems. Let’s explore how steel ball bearings achieve these benefits:

1. Rolling Motion: Steel ball bearings operate on the principle of rolling motion. The small spherical balls within the bearing roll between the inner and outer raceways, rather than sliding against each other. This rolling motion significantly reduces friction compared to sliding friction that occurs in plain bearings or bushings. As a result, steel ball bearings minimize energy losses due to friction and enable more efficient operation of machinery.

2. Point Contact: Steel ball bearings feature point contact between the balls and the raceways. This means that only a small area of the ball is in contact with the raceway at any given time. Point contact reduces the contact surface area and, consequently, the frictional resistance. The reduced friction allows the bearing to rotate more freely and with minimal energy loss.

3. Lubrication: Proper lubrication is crucial for the smooth operation of steel ball bearings. Lubricants such as grease or oil are used to reduce friction and wear between the balls and the raceways. Lubrication forms a thin film between the contacting surfaces, providing a barrier that prevents direct metal-to-metal contact. This lubricating film further reduces friction and dissipates heat, improving the overall performance and longevity of the bearing.

4. Precision Manufacturing: Steel ball bearings are manufactured with high precision and tight tolerances. The dimensions, roundness, and surface finish of the balls and raceways are carefully controlled during the manufacturing process. This precision ensures that the balls roll smoothly and with minimal resistance within the bearing. The precise fit between the balls and the raceways contributes to reduced friction and promotes smooth operation.

5. Material Properties: Steel ball bearings are typically made from high-quality steel alloys that exhibit excellent mechanical properties. The steel used in ball bearings is hardened and heat-treated to enhance its strength, durability, and resistance to wear. These material properties allow the bearings to withstand high loads and provide reliable performance over extended periods. The smooth and hard surface of the steel balls also reduces friction and wear between the balls and the raceways.

6. Cage or Retainer: In many steel ball bearings, a cage or retainer is used to separate and maintain proper spacing between the balls. The cage prevents the balls from touching or rubbing against each other, ensuring smooth rolling motion. It also helps to distribute the load evenly among the balls, reducing stress concentrations and minimizing frictional resistance.

7. Noise and Vibration Reduction: Steel ball bearings contribute to the reduction of noise and vibration in machinery. The rolling motion of the balls and the precise fit between the balls and raceways minimize the occurrence of undesirable vibrations and noise generated by friction. This is particularly important in applications where quiet operation is essential, such as in precision machinery or automotive components.

In summary, steel ball bearings reduce friction and enable smooth operation in machinery through rolling motion, point contact, proper lubrication, precision manufacturing, high-quality materials, the use of cages or retainers, and noise/vibration reduction. These factors combined make steel ball bearings essential components in a wide range of applications, contributing to improved efficiency, durability, and performance of machinery and mechanical systems.

China Best Sales 1688 Spare Parts Stainless Steel Bearings 6901 Zz 2RS Deep Groove Ball Miniature Bearing Radial Spherical Plain Bearing Slewing Bearing   supplierChina Best Sales 1688 Spare Parts Stainless Steel Bearings 6901 Zz 2RS Deep Groove Ball Miniature Bearing Radial Spherical Plain Bearing Slewing Bearing   supplier
editor by CX 2024-03-25

Steel Ball Bearings

As one of the leading steel ball bearings manufacturers, suppliers, and exporters of mechanical products, We offer steel ball bearings and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of steel ball bearings.

Recent Posts