Product Description

Company Profile
ZheJiang Furlante Bearing Technology Co  is a professional bearing manufacturer with factory and trade. Our company is mainly engaged in deep groove ball bearings,apered roller bearings,External spherical housing bearings,Thrust ball bearings,Linear CZPT bearing system. We have a self-developed team to design and improve the bearings. To meet the needs of different customers. we provide oem and odm,and we have a perfect quality inspection system and professional after-sales service team. we will provide you the best products and services with the most reasonable price.
Technical information:

Bearing   No. GERMANY SWEDEN JAPAN Dimension(mm)   kg
d1 D B C
DAC25525716   565592       25   52   20.6   20.6   0.19 
DAC25520037  156704      25  52  37  37  0.31 
DAC25520042        25  52  42  42  0.36 
DAC25520043  546467/576467      25  52  43  43  0.36 
DAC25550043    617546A  25BWD01  25  55  43  43  0.44 
DAC25560032  445979  BT2B445539AA    25  56  32  32  0.34 
DAC29530037  857123AB      29  53  37  37  0.35 
DAC30600037    BAH5000    30  60  37  37  0.42 
DAC30600337  529891AB      30  60.3  37  37  0.42 
DAC30600337  545312/581736      30  60.3  37  37  0.42 
DAC34620037  531910/561447  BA2B633313CA  30BWD07  34  62  37  37  0.41 
DAC34640034    434201B/VKBA1307  30BWD07  34  64  34  34  0.43 
DAC34640037  532066DE  BAHB311316B/3 0571 4    34  64  37  37  0.47 
DAC34640037  540466B/8571  VKBA1382  34BWD03/ACA78  34  64  37  37  0.47 
DAC34660037  559529/580400CA  605214/VKBA1306  34BWD04/BCA70  34  66  37  37  0.5 
DAC35640037    BA2B3 0571 6  34BWD11  35  64  35  35  0.4 
DAC35650035  546238A  636114A/479399  34BWD10B  35  65  35  35  0.4 
DAC35650037    BAH0042    35  65  37  37  0.51 
DAC35660032    BA2B443952/445620B    35  66  32  32  0.42 
DAC35660033      35BWD19E  35  66  33  33  0.43 
DAC35660037  544307C/581571A  445980A/BAH-5001A    35  66  37  37  0.48 
DAC35680037  430042C  633676/BAH-0015    35  68  37  37  0.52 
DAC35680037  541153A/549676  311309/BAH-571    35  68  37  37  0.52 
DAC35720033  548083  633528F/633295B  35BWD21(4RS)  35  72  33  33  0.58 
DAC35720033  548033  BAH0031    35  72  33  33  0.58 
DAC3572571    BA2B445535AE  XGB 4571  35  72.04  33  33  0.58 
DAC35725713/31  562686  456162/44762B  XGB 4571  35  72.02  33  31  0.54 
DAC35720034  54 0571 /548376A  BAHB633669/BAH0013    35  72  34  34  0.58 
DAC35770042    VKBA1343  35BWD06ACA111  34.99  77.04  42  42  0.86 
DAC37720033    VKBA857  35BWD01C  37  72  33  33  0.51 
DAC37720037    VKBA3763    37  72  37  37  0.59 
DAC37725717  527631  BAH0051B    37  72.02  37  37  0.59 
DAC37740045  541521C  BAH0012AM5S    37  74  45  45  0.79 
DAC38700037  ZFRTBRGHOO37  633571CB    38  70  37  37  0.56 
DAC38700038    35715A  37BWD01B  38  70  38  38  0.57 
DAC38710033/30    BAHB636193C    37.99  71.02  33  30  0.5 
DAC38710039   574795A  686908A  38BWD31CA53  37.99  71  39  39  0.62 
DAC38720036/33     FW135  38BWD09ACA120  38  72  36  33   
DAC38720040  575069B  VKBA3929  30BWD22  38  72  40  40  0.63 
DAC38730040       30BWD12  38  73  40  40  0.67 
DAC38740036/33   574795A  VKBA1377    38  74  36  33  0.61 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 60°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Load Direction: Radial Bearing
Material: Bearing Steel
Transport Package: Single Box
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Good quality Deep Groove Ball Bearing, 6201 6202 6203 6204 6205 6206   bearing assemblyChina Good quality Deep Groove Ball Bearing, 6201 6202 6203 6204 6205 6206   bearing assembly
editor by CX 2024-02-09

Steel Ball Bearings

As one of the leading steel ball bearings manufacturers, suppliers, and exporters of mechanical products, We offer steel ball bearings and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of steel ball bearings.

Recent Posts